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Ultrasonic Transducers Using Normal Mode Coupling

by

Hossein Eslambolchi
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It is well known that normal mode coupling in large

diameter piezoelectric plates causes serious difficulties when

attempting to operate over wide frequency bands. As a

consequence transducers are commonly constructed as a mosaic of

elemental resonators, each of which has a predominant single

mode of mechanical oscillation at the frequency of interest.

Such transducer arrays may be electrically steered to angles

other than normal by applying different phases of driving
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voltages to different elements. A continuous plate can also be

used to steer a radiated beam using normal mode coupling in a

narrow band system. The technique is to adjust the frequency of

the driving voltage to match the travelling wave velocity of the

normal mode which possesses the desired spatial phase

relationship across the face of the plate. If the electrodes of

a continuous piezoelectric plate are segmented so that regions

of the plate can be driven with different phases, adjacent

normal modes corresponding to a sine-cosine spatial phasing can

be preferentially excited to generate a travelling wave. A true

travelling wave will suppress the strong mirror lobe that would

exist if a standing wave were excited. The velocity of the wave

will be frequency dependent and the wave number can be

controlled to generate a steered radiated beam.

In this research the theory of normal mode steering will

be developed, the dispersion curve will be derived so the

"" travelling wave velocities can be evaluated, and the effect of

the mirror lobe due to the reflection from the edge boundary

will be analyzed. Finally, the theory will then be verified by

measurements on an experimental normal mode transducer which

will be compared with a companion staved or mechanically

segmented transducer.

xv



i

I!

I.

p

CHPE

INRDUTO

p
P.

K

p.
b1

L ' Q. ..- ~ C



- -. --,- .-- --.- . , - .~~

2

1. Statement of the Problem

This thesis deals with electrically steering a

piezoelectric plate transducer to generate an acoustic beam at

angles other than normal to the plate while still retaining the

high coupling associated with normal mode operation.

The theoretical analysis that treates the dispersion

relation, reflections at the boundary, and grating lobe structure

will be presented.

2. Introduction

In vibrating piezoelectric solids, many effects cause

small changes in the natural frequency of the plate, corresponding
-p

to different vibrational modes with different amplitudes. These

effects include such things as material stiffness, water loading

of the surface, stiffening of the surface (due to the presence of

a thin surface conducting sheet), the biassing stress, strains,

and electric fields which may be applied.

When generating an acoustic beam at angles other than

normal to the transducer plate, we are applying different phases

of driving voltage to different sections of the transducer. This

I.

L.o

£'o

a. . . . m ..-. a

* %. . . . .. *mS * *; aS~~..... a ~ .
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phase difference causes a small change in the resonant frequency

of the plate which corresponds to a different mode of mechanical

oscillation.

Since the plate is driven close to its natural frequency,

different modes with different amplitudes will be excited. But

since we are applying different phases across the plate as we

steer the beam electrically from normal, we are particularly

looking for modes which have the same spatial phase distribution

as the ones which we are applying. Therefore the problem is to

find frequencies close to the plate's natural frequency which have

the same spatial distribution. Finally, by matching these with

the frequency of the driving voltage, the maximum response can be

achieved. The advantage of this continuous plate with normal mode

operation is that the grating lobe would be suppressed. By

contrast, if one applies the phase distribution to a discrete

segmented plate which has no normal mode coupling, the grating

lobe will pose a major problem if the segments are wider than one-

half wavelength.
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3. Background

Wave propagation in a homogeneous infinite piezoelectric

plate has been the subject of extensive investigation over the

years. Rayleigh [1] gave the solution for an isotropic elastic

plate and Ekstein [2] gave the solution for a particular

anisotropic elastic plate. Since then several authors have

'-" calculated the roots of Rayleigh [3-7] and Ekstein [8-10]

" - transcendental frequency equations in order to determine the

resulting dispersion relations and solve high and low frequency

vibrational problems. These solutions and calculations are

applicable to purely elastic plates and to plates which obey the

linear piezoelectric equations but which have low electro-

mechanical coupling factors. However, certain polarized

piezoelectric plates such as PZT-4, PZT-5 and PZT-7 which obey the

linear piezoelectric equations have high electromechanical

coupling factors; consequently the aforementioned solutions are

inadequate to describe wave propagation in these plates.

Tiersten [11] solved the problem of wave propagation in an

infinite piezoelectric plate belonging to the crystallographic

class situated between shorted electrodes for two special

orientations of the sixfold axis. The solution was derived using
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the linear piezoelectric equations. He showed that for a given

frequency and wave number in the propagation direction there are

three independent solutions which are coupled at the traction-free

boundaries of the plate. The dispersion curve was derived from

the resulting transcendental equation. Tiersten's solution to

derivation of the dispersion curve was focused on the unforced

mechanical vibration where there is no electrical drive on the

sections of the plate. This results in no electrical stress in

the plate.

In later years Tiersten [12] solved the problem of the

wave propagation by assuming that the plate is driven electrically

with constant electric field in the plate and traction-free

boundaries. The dispersion curve derived from his analysis is not

too much different from the undriven plate. His electrical drive

consisted of uniform amplitude and no phase distribution in the

form of a constant electric field. He investigated different

modes of wave propagation to determine which modes can be excited

under electrical stress. Both symmetric and antisymmetric waves

were analyzed. The different propagational modes contribute

different spatial phase distributions in the plate with different

acoustical amplitude distributions.

........................ *. -....

. . . . . .
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Bleustein [13) approached the problem of wave propagation

in an infinite plate by assuming that there are perfectly thin

electrodes coated on the surface of the plate and that the

electrodes are short circuited. His solution results in zero

potential on the two surfaces of the plate -- a boundary condition

which is different from that which has been investigated in this

thesis.

This thesis evaluates the dispersion curve for an infinite

piezoelectric plate by assuming pressure release boundaries and a

constant voltage but different phases to different sections of the

plate. The theory will be analyzed in Chapter II and verified

against the experimental data in Chapter III.

4. Approach

Much research has been devoted to generating an acoustic

beam at angles other than normal to the transducer plate using

piezoelectric transducers. Up until now, transducers have usually

been segmented by dicing the plate into elemental resonators which

have been both electrically and acoustically isolated. Figure 1

shows such a segmented piezoelectric plate.

- : : ~~~~.. .. .. ... ... ...... : . ,......-... . .... .- . . . .
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For a segmented plate the simple dispersion equation can

be written as

K-2  = 2 K2 2-K D  K + K +K
D x y

where KD = wave number (discrete elemental resonator) and Kx, Ky

and Kz are wave numbers along x, y, z, respectively. The equation

can be rewritten as:

03 L) + mT- + ()

(-

S T

where L, D, and T are length, width, and thickness of an elemental

resonator, r, m, and p are integers (0,1,2,...), and CS is the

velocity in the plate. Since the plate is resonant in its

fundamental mode of mechanical oscillation in the thickness

direction, p=1, m=n=O. For such a resonator, there exists not

only this fundamental mode of mechanical oscillation but also

other higher order modes (n, m > 0) which are overtones in the

frequency response of the plate. An array of these resonators can

be electrically steered to angles other than normal by driving the

individual elements at the main natural frequency, but applying

different phases to the resonators.

"-.'..'.'.'..'-'- ',..',..'..'.°'-.'.,.'a-.'. "... ... .... ,... .. . . ..".. - -"- - -, - . . . ." . - . .. o. ....



An alternative approach that will be demonstrated here is

to use a continuous plate to electrically steer a beam to angles

other than normal by applying different phases of driving voltage

to different electrodes. If the electrodes of a piezoelectric

plate are segmented such that sections of the plate can be driven

with different phases, then certain normal modes can be

deliberately excited. This can be achieved in a continuous plate

where there is normal mode coupling.

For a continuous plate the dispersion equation of (1) also

applies, only the dimension differs. The dimensions of a

continuous plate (Figure 2) are large with respect to a segmented

discrete type; as a consequence there will be normal modes which

are close to the natural mode of the plate. Because of the

coupling in the plate, there exist normal modes with different

amplitude and spatial phase distributions in the plate. In our

application the plate is driven close to its natural resonant

frequency, and different modes with different amplitudes will be

excited. We will particularly look for modes which have the same

spatial phase distribution as that of the impressed electric

field. When this match is achieved, we will realize a maximum

response on the beam pattern of the transducers.

!1
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When the frequency of the travelling wave which possesses

the desired spatial phase distribution is found, the reflections

from the edge boundary will create a mirror lobe. The creation of

the mirror lobe is due to the standing wave that will be formed.

The magnitude of the ratio of the travelling wave can be enhanced

by applying suitable dissipative damping coupled to the edges of

the plate to reduce the reflections that cause a standing wave to

be formed.

An active approach which has been used in this thesis is

to reduce the reflection of the edge boundary by driving the last

few segments out of phase and forcing a reduction in the magnitude

of the travelling wave by the time it reaches the boundary.

The approach for a continuous plate also circumvents the

necessity of dicing the fragile ceramic disk, and allows one

merely to use segmented electrodes.

5. Grating Lobe in Discrete and Continuous Plates

Discrete plates have disadvantages due to the grating

lobe, which is an aliasing problem in comparison to the continuous

plate. In a discrete plate the bar moves as a whole. The

. . . . . . . . . . . .
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assumption we could make here Is that the displacement across the

segment is uniform, so that what we have is a distribution that is

spatially quantized, with an accompanying high spatial harmonic

content caused by the discontinuities between segments. Because

of the coupling in the plate, spatial frequency content of the

continuous plate is different in that there are no

discontinuities. This reduces the high frequency component and

lowers the grating lobe amplitude considerably. The analysis for

the grating lobe will be discussed in Chapter II.

6. Phase Quantization

Phase quantizatlon has been used in this investigation in

order to generate electrical phase distribution. This

quantization was achieved by dividing the phase uniformly between

zero and 2w. Two, three, and four bit quantizatlon was used in

order to evaluate the effect of the quantization on the beam-

pattern. This quantization technique will be discussed in

Chapter III.

OW

i'

I,.
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2.0 INTRODUCTION

The small vibrations of piezoelectric bodies are governed

by the equation of the linear theory of piezoelectricity. In

piezoelectricity the quasistatic electric field is coupled to the

dynamic mechanical motion. To be more specific, the equations of

linear elasticity are coupled to the charge equations of

electrostatics by means of piezoelectric constants.

Although there are a reasonable number of papers on

piezoelectricity currently available [1-2], they have all been

investigations from different practical points of view, and use

the theory sporadically, without a systematic development. All

the existing papers discuss the piezoelectric vibrations of bodies

only in the simplest cases of the thickness vibrations and the

low-frequency extensional and flexural vibrations of thin rods.

In addition, considerations of large piezoelectric coupling are

absent in papers on this subject except for discussions of the

simplest case of elementary thickness vibrations [3-5].

2.1 Dispersion Curve

In this paper, the rigorous solution of the problem of

wave propagation in an infinite piezoelectric plate is derived

.m.....
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from the linear piezoelectric equations. The surfaces of the
6-.

S." , plate are pressure release and completely coated with segmented

electrodes. No restriction on the relative magnitude of the

elastic, piezoelectric, or dielectric constants is imposed. The

solution will be valid for materials with high electromechanical

coupling factors. We will consider the piezoelectric plate

polarized in the thickness direction. A transcendental frequency

equation is derived, the roots of which determine the modes of

propagation and the dispersion relations in an unbounded plate.

r " Figure 1 shows a piezoelectric plate which has been

segmented and isolated electrically. A rectangular Cartesian

coordinate system Xi , i=1,..3 is chosen with x3 = th defining the

faces of the plate which is poled in the thickness direction. An

index preceded by a comma denotes differentiation with respect to

a space coordinate.

r

I..

* •
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b 22

2.2 General Equations

t. The system of equations governing the behavior of this

plate consists of the following.

The stress equations of motion [6]:

ij i  = PuJ (1)

The charge equation of electrostatics:

D =0 (2)
bI',

,- The strain-mechanical displacement relations:

Skt =+ U (3)

The electric-field potential relations:

E K = "'_K (4)

The linear, piezoelectric relations [7-8]:

T.. = C S -Tj ijKZ SKI e Kij EK (5.1)

D = e iKx S K. + EiKEK (5.2)

where, in the above, Tij, u., Di, SK , E, are the components of
3 i K

stress, mechanical displacement, electric displacement, strain,

. . .

. a .

. . . . . . . . . . . . .
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and electric field, respectively; p and 4 are the mass density and

the electric potential, respectively; C 'j, eKij 'iK are the

elastic, piezoelectric, and dielectric constants, respectively.

The face of the infinite plate is immersed in castor oil

in a surrounding circular package and tested in water. Since the

impedence of the water is much smaller than the impedance of the

ceramic, we can ignore the medium loading and basically assume

that we have a pressure release boundary. This assumption is not

as valid at the resonant frequency of an entitled normal mode.

The faces of the infinite plate are coated with segmented

electrodes so it can be steered electrically. Since the

electrodes are assumed to be infinitesimally thin, we can ignore

all possible mechanical effects.

S3j= 0 at x3 = ±h (6)

i(Kx1 Sin -- t)
," = RE [e 3 at x3 =±h (7)

where e is the steering angle, w is the frequency of the driving

distribution, t is the time, and 4, is the driving potential.

For the plate which has been used in this thesis, lead-

zirconate, the piezoelectric stress matrix can be written as

..

* ..r. . .. .

L''. ''.. '. '. \ " " ." .-.=.''.."-..,. .... "., . .. -" " -. "- ".."• .. •". ". .."'". ..." '" ". '"'" -". . -". "' -" . -'... .".-". ".. -. -.."'...... . - -.-
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.- 0 0 0 0 0 0

e. 0 0 0 0 0 0 (8a)I p
e31 e31 e33 0 0 0

e31 states that the plate is driven along its thickness direction

and the resulting strain is along x1 direction. Since the

material property is the same along the xl,x 2 direction but is

different along the x3 direction, e33 would be different from both

e31 and e32.

The dielectric matrix can be written as

Ell 0 0

C.. 0 E1 i 0 (8b)
0 0 3

where again, because of material symmetry along

X,X 2, eli and are the same and E is different.

The elastic constants are:

L~
o

• ,° 
.. ° . ° . o. . . . .... 

.
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C1 1  C1 2  C13  0 0 0

C C C 0 0 0', 12 II C13

C pq C13  C3 C33 0 0 0 (8c)

0 0 0 C44  0 0

0 0 0 0 C44  0

o 0 0 0 0 C6

where p or q = 1,2,3,4,5,6 may be replaced by 11,22,33,23 or

32,31,or 13,12 or 21, respectively.

Now within the plate we could write the stress equation of

motion as follows:

= 6T11  6T12  6T13

1 -T-1 -T 2 -7 3

6T21 +T 22  6T23
2 6x1  6x2  6x3

6T 6T 6T
= 31 + 32 + 33ou3 6- -6+--X-

1 2 3

and by Maxwell's electrostatic relation:

= 0 (10)

4

,.-. .....'.."...-..- ..- .-.-.-..- - ..=...- -......-... ..-..... ....... .... ..... . .
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where v (6x 6x (11)
~61  2 3x

In a piezoelectric plate the electric flux density can be

written as:

D eiKX SK+ CiK EK  (12)

Upon substitution of (8), Eq. (5) becomes:

T 11 Cl1 Sl1 + C 12 $22 + C13 $33 e31 E3

T 22 ; 12 $11 + C 11 $22 + C13 $33 e 31 E3

T C CS + C S +C S (13)
33 13 11 13 22 33 33

T =C S
23 44 23

T 13 = 44 $13

T =C S
12 66 12
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Now by substitution of (3), (4) into (13), Eq. (14) results:

T =C U + C U +C +e
11 11 1,1 12 2,2 C13 U3,3  31+

T C U + C U + C U + e
22 12 I,1 11 2,2 C13 U3 ,3 + e31 ' 3

T C CU + C U + C U +e
33 13 1,1 13 2,2 33 3,3 +333

(14)

T23 = C44 (U3 ,2  2,3

'. T 3 = 44 (3,1 + 1U ,3 )

T1 C44(U +

I'::: 66 : 66(U2,1 1,U I 2

and Eq. (12) becomes

t7

D = ~(15)
2 -2

DU e U e U

3 31 1,1 31 2,2 33 U3,3 33 3

r7
,'.*

.- I.
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Substituting Eqs. (14), (15) into the equations of motion and

electrostatic relations of (2), Eq. (17) is achieved:

C11 UI,11 + C12 U2,21 + C13 U3,31 + e31 *'31 + C66 U2,12

+ C 66 U 1,22 + C44 U3,13 + C44 U1,33 1

C U + C U + C + U +C U +e

C66  2,11 66 1,21 12 1,12 + C11 U2,22 + C13 U3,32 + e31 ',32

+ C44 U3,23 + C44 U2,33  = pOu2

(16)

C44 U3,11 + C44 U1,3 1 + C44 U3,22 + C44 U2,32 + C13 UI,13

+C U + C U +Pu
13 2,23 33 3,33 + e33 'F,33 3

and

'S
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_E11 *,11 C 11 *,22 + e3l U1 ,13 + e31 U2,23 + e33 U3,33  c £33 ,33 = 0

(17)

and in our new notation, the boundary condition becomes:

T = 33= T31= 0 at x3  = ±h (18)

Since the plate is driven along its length (xI direction)

we could assume that the mechanical displacement is constant along

the x2 direction.

Since the plate is forced electrically into vibration, the

total potential in the plate can be written as:

*(x I, x3 ,t) = [*H(xl,x 3 ) + *ps(X~x,3)] e~t (19a)

and *H = 0 at x3 = ±h (19b)

where *H is the homogeneous steady state solution and ps is the

particular solution due to the applied potential between the two

surfaces of the plate.

i

|
L . .. ° .'. .v. _ . " ,. , ,.,.....-,.... .. . . . . -.. -.. . . .. .... ., ,. ., . .. ,.. .,.. . . ..
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Now we need to solve the homogeneous solution where

*H (xlx 3) = 0 at x3 ±h.

PuI = C1l U1,1 1 + C1 3 U3,1 3 + e31*H,3 1 +c4 4(u3 ,1 3 + ui,33)

PU3 = c 4 4U3 , 1 1 + c4 4UI,31 + c 1 3U1 , 1 3 + c 3 3U3 ,33 + e33*H,3 3 (20)

- E11H,11 + e3 1ul, 13 + e 3 3u3 , 3 3 - £33*H,3 = 0

Let's consider a solution of (20) as:

u1 = K1 cosPx 3 sin(Lx1 - t)

u3  K3 sinPx 3cos(Lx I - wt) (21)

= B sinPx3 cos(Lx1 - Wt)

where KI,K 3,B are constants and P,L are wave number along

thickness and propagation direction, respectively. Notice the

form of Eq. (21) which is a standing wave along the thickness

direction and a travelling wave along the propagation direction.

Eq. (21) satisfies (20) if the following holds:

""1'

.

a' . '. '+."+Qo+,II '. Q Q "-"q t ",+ + . ++ ', 'l + m m + + ,, . .','l l . o . .- + + ~ II,"I 1 % ,+ . %
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2 2 2

(C11L2 + c 44P2 .p 2 K 1 + (c 13 + C 44) LPK 3 + e 31LpB =0

(c44 + c13 ) LPKI + (c44L
2 + c33P - PW 2)K3 + e33P 2B = 0 (22)

2 2 2e31LPK1 + e33P K3 - (E1lL + E3 3P )B = 0

This system of linear, homogeneous equations in K1, K3, B

yields nontrivial solutions when the determinant of the

coefficients of KI,K 3 ,B vanishes; i.e., when

(CL2 CP2 2 ( C)PeL(c 11L 4 4P2-pw ) (c 13 +c4 4 )LP e 3 1LP

(c 4 4 +c13 )LP (c44L2+C33P2-P 2  e 33 P2 =0 (23)

e 31 LP e33P
2  -(CllL2+C33 P2

Eq. (23) is quadratic in w2  but cubic in L2,p2 . Therefore, for a

given w and a propagation wavenumber L, there are three thickness

wavenumbers (P(1), p(2 ), p(3 )), each of which yields an

independent solution and amplitude ratios when substituted in

(22). The amplitude ratios will be designated by
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( ) (i) (i
(K) = (1 3 82 ) (24a)

where

1( [(CiL2+C44 P(i ) 2  (L2+P(i)
2 _ [P() 2  3() 2

= [e-31 P()*(c 44L
2+C33P() 4P2  [(c44+C13 )LP()*e 33

P(i )2

[e33P(i)
2 *e31LP() + [(c +c)LP(i)*(cIL2+33

P i)2

Eq. (23) clearly shows that the piezoelectric constants

eip couple the quasistatic electric solution of (17) to the

dynamic mechanical motion of (20). These two solutions uncouple

only if all the eip vanish. This coupling of a quasistatic

phenomenon to a dynamic phenomenon states that a given frequency

and propagation wavenumber result in three thickness wavenumbers.

One solution of the differential equation is insufficient

to satisfy the boundary conditions; all three solutions are

required. Hence, we must take:

h°



~~~~ 7- 7- t

" 331

3"Ul sin(Lxl " WO It= )O OP~~

u = cos(Lx I - t) > A(i)$(I) sinp(i)x 3  (25)

3
€ cos(Lx1 -wt) A()B (i) sinP(')x2 3

as solutions of the problem.

Now we need also to consider the boundary condition in

order to solve the problem completely. Substituting from (25)

into the boundary conditions (18), (19b), and using the required

relations in (14), (15), one obtains:

33= C13U, +c 33u3 3 +e 33 ,3 = 0

T13 = c44 (u3,1 + u,,3 ) = 0 at x3 = h (26)

23= C4 4 (u 3 ,2 u2 , 3) = 0

,.!*H 0

-.

, and from Eq. (26), Eq. (27) is achieved:

-p

. - .

-' *. .

. . . . . . . .-°A .
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3 Ti ) sinP(i)h 0

--"(i () (i) h

13

SA(' T 2 ()cosP
( =h 0 (27)

3 (i) 0)0
A i )2 sinP h = 0

where

T = c44 (B3(i)L + 61(i ) p(i))

(28)

T 2(i )  () L + c33 03 i) p(i) + (i) p(i)

Eq. (27) consists of a system of linear, homogeneous algebraic

equations in the A(i). This system yields a non-trivial solution

when the determinant of the coefficients of the A(O) vanishes;

i.e., when

T 1  sinP(1 )h T (2) sinP (2 h (3) sinP (3)h

TI()(s ) T n2 cosp(2 )h T n3 Pcosp(3

D(L,w) = T2  cosp h T2 2

()(2) (2(3) (3)
o 2(

1 )sinP(1)h 02 sinP 2 h 02 sinP )h

(29)

-..--. **...--. *..~ -*.... . * ** - .* ~ . .. .. - ~ **

- . - S -
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Eq. (29) is a transcendental equation, the roots of which

enable the determination of the dispersion relation for this

piezoelectric plate. Eq. (29) contains an infinite number of

roots hn, each of which determines a point on the dispersion

spectrum and yields amplitude ratios (A() : A(2 ) : A(3 )) when

substituted in (27).

Now for the purpose of calculating the dispersion curve,

it is convenient to write the pertinent equations involved in the

calculation in terms of certain dimensionless quantities. The

pertinent equations are (22), (23), (27), (28), and (29). Let's

assume:

• |2Lh 2Ph

c Pq eip i
c : =p i - I/2 E : (30)
Cpq c44  (c44E33) 133

W C4 /12 C 3/2

(Z44)

Now the pertinent equations become

- ' - - --*. . . . . . ..... -.. - - . . .*.-*. D ,o , • • . .. .. * .... , , ,.•
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( 11 n2 +c 4 4 a 2 1)K 1 + ( 1 3 + c4 4 ) aiK 3 + elna B 0

*(E 44 + E 13) ,nKl + (E 44' 2 + E3 3 a 2 2 K 3 + e33 a 2 B =0

0 1na K, + e a K 3  ( 11 2 + 2 3 B =0 (31)

and

2 2 2 2Ell1  n + ~ )4 (ED + C4 4 ) na e31an

4+ c13 ) ( 4 4 n + 33

e 1an 23 - (c ll E33a)

(32)

30

1 2

SA(') T2 ' Cos I a~' (33)

11 A ' 2 sin 'T a

............................2......:.... 
. . .
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where

T1(i - (3(i)(i) )(

T = 44 ( n + 1 P

(34)

2 C13  1  n + c3 3  3 i +ae33 82 i

and finally, from the determinant of (33)

X(1) cot iT a(l) + X(2 ) cot a( 2 ) + X(3 ) cot (3 = 0 (35)
T

where

iX(1) "(1) -T (3) (2 T1(2) 2(3))K. = T2 ( IT 82(2 -.(2 2)

'" (2 " TII ) ;(3) T(3)- )
2 2= T2  ( ) a2 - a2() (36)

.. ~ ~~(3) T(3) T ZI "() Z
T 2  T 1(2 ) a2(1) - 1(1) 22)

The relations between 2 and n, (i.e., the dispersion

relation), can now be evaluated. Several methods of obtaining the

roots of the transcendental equation have been suggested by
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several authors [9-10]. But a very simple, straightforward

procedure for calculating the dispersion relation is by selecting

a value of n. The further choice of S permits the calculation of

the a(') from (32) and the gji) from (31) so that the T Ci)

and T2(i) may be computed from (34). The X(i) may now be

determined from (36). If the values thus determined satisfy

Eq. (35), the selected values of n and 12 constitute a point on the

dispersion curve. If Eq. (35) is not satisfied, we repeat the

calculation for different values of n and 92 until Eq. (35) is

satisfied and a root has been obtained. When a sufficient number

of values of n and S2 satisfying Eq. (35) has been obtained, the

dispersion curve can be plotted.

The starting point on the dispersion point is critical in

determination of the dispersion curve. The solution at an

infinite wavelength can be obtained simply by setting L = 0.

However, the procedure is not quite as straightforward. When L is

set to 0, Eqs. (22) and (23) becomes, respectively,

2 2 2(C - pw ) K1

(c33P2 . 2 ) K3 + e33P 2B = 0 (37)

2 2
e3 3P K3 - 3 3P B = 0

and

.'I

. . . .."
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2 2
(C44 pc 0 0

0cP2 -2 0 0 (38)
33

0 e33P - 3 p2

F rom Eq. (38), the three P~i are given by

(p(l), p(2),p( 3)) 1/~(/c4
3 2, 0,~~E 1 /2](9

-2
where C 3  C 3 + e3  /E 3  The substitution of the three PMi

successively into the algebraic equation of (37) yields

(1 (M) 83i M 8;2 M)'

Eq. (27) now becomes:

A 4 4  sinP 1 h = 0

A(2 )e P (2) cop( )h+o A 3 (3)c3 +e 2 /e3 )P(3 cosp(3 )h = 0 (40)

A sinP ~2 h + A ()(e 33 E 3  sinP 3 h =0

33/33
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The last two equations (39,40) show that as p(2 0,

c (2 -, since sinP(3)h and cosp(3)h cannot equal zero

simultaneously. However, A(2) and p(2) always occur as an

indeterminate product. Hence, Eq. (40) may be written as:

A 1)c 4 ()sinPO h =0

e3  + A (3 p(3 ) cosp(3 )h =0 (41)33 33

Kh + A ()(e33 c 3  sinP ()h = 0

where K =-A (2) (2L) Eq. (40) yields a nontrivial solution when

c 44 P(1 )sinP(1)h 0 0

0 e 33  c3 p(3)cosp(3 )h =0 (42)

333
0 h (e 33 /C33)sinP )~h

holds.

Eq. (42) yields two transcendental equations, each of which

determines a set of roots. The two equations may be written as:
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sinP(1)h = 0 , tanP(3 )h = P(3 )h/Kt2  (43)

where Kt 2 / -E

t  (e3 3 1E3 3 c3 3)

Thus we see that the first transcendental equation yields

thickness frequencies and modes which are identical with the

purely elastic modes. We also see that the second transcendental

equation yields thickness frequencies and modes with piezoelectric

coupling. Thus for this piezoelectric plate the wavelengths of

overtone resonances are not integral fractions of the fundamental;

as a consequence the resonant frequencies of overtone modes are

not integral multiples of the fundamental. The deviation from the

integral multiple relationship depends on the electromechanical

coupling factor Kt only.

The analytical approach that has just been described here

was done on the piezoelectric plate (lead-zirconate) and the

dispersion curve was evaluated. Figure 2 shows the dispersion

curve for such a plate. The abscissa is the normalized

(dimensionless) wavenumber and the ordinate is the normalized

(dimensionless) frequency.

i.
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2.3 Electrical Steering

The evaluation of the dispersion curve (frequency vs.

wavenumber) can now be matched to the wavenumber of the driving

distribution so the beam can be steered electrically.

By Snell's Law:

K sine = Kp( (44)

where K0  T- , C is the speed of sound in the water, ( is the

angular frequency, and 0 is the steering angle. By solving (44)
0

the corresponding frequency vs. the steering angle for such a

plate c,.n now be calculated from

K sinO -Kp(W) = 0 (45)0 0

Figure 3 shows the theoretical curve for such a plate

which has been polarized along its thickness direction. The shape

of the curve is similar to the dispersion curve of Figure 2. The

asbscissa is the steering angle in degrees and the ordinate, the

frequency in KHZ.

'p
•

-.- .- [..* .\ X.'
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"* 2.4 Grating Lobe In a Discrete and Continuous Plate

For an electrically segmented and acoustically isolated

plate the acoustic amplitude distribution of the plate is uniform

since the segments move as a whole, the assumption we could make

here is that what we have is a spatially quantized amplitude

distribution, with accompanying spatial harmonic content caused by

the discontinuities between segments.

Figure 4 shows a discrete linear, equally spaced array in

which the beam pattern function can be derived as:

V.= R cos(Wt + mu) (46)
m'. m

where Rm is the individual voltage of each array:

luimu + (n-l)iu

V = [R0 + R, e i u + ... + Rme Rn 1 e

where u = KD sine (47)

6 physical angle

D = spacing between the elements

K = wavenumber

U-
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Multiplying (47) by eiu and subtracting from (47) results in:

SeinU 1) sin(nu/2 (48a)e = lu " ) _ sin(u/2) 4 a

e - 1

Now the beam pattern V must be multiplied by the directivity of

each individual element. That is,

v" sinnU/2) sin(U/2) (48b);.- sin(U/2) (U)

where the second term in (48) is the directivity of each elements.

Here if the beam is steered off normal [11-14]

u KD(sine - sineo) (48c)

For the discrete segmented plate, if the path difference between

the segments reaches 2n, the pattern repeats itself; that is,

KD(sinO - sine 0 2n% n = (0,1,2,...) (48d)

so there exists some spatial harmonic content of the resonant

wavenumber that gives rise to the grating lobe in a discrete

plate.

.- • • . .o. . . . . . . . .... . . .. ° . . .

.-'.' "2 ' '€'€ ' "- ¢ ".... -..-. . . ..-.... ..-.. .. . .... --. -.-. .. .. .. ....... ... .. . . . ... ,.-. -. ..-. . . ..



,,. .. • .. .-.-------------- . - ,. . .. ,

46

For the continuous plate, the segments' motion is

different than the one for an acoustically isolated plate, since

there are no discontinuities in the acoustic amplitude

distribution because of the coupling in the continuous plate.

This amplitude distribution has a lower spatial harmonic content

which reduces the grating lobe considerably when the beam is

steered off normal. The plate in effect spatially filters the

high harmonic that is associated with the electric field.

This spatial filtering effect can now be derived

theoretically as a function of a normalized wavenumber in the

plate.

From (19)

*(Xlx 3 ,t) = [*H(Xl,X3) + *ps(XI,X3)] eiA

We have already solved the homogeneous solution of the

problem when the dispersion curve was derived. Now we need to

find the particular solution due to the applied electric field.

From the particular solution we obtain the acoustic amplitude

distribution as a function of the wavenumber in the plate for a

fixed frequency.

k

PI.

I°
•

. . . . . ;* *... .. . * . * . . ,-*. . - . . * . . . . . .
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Since the plate is driven externally with potential of

Eq. (7) at the faces of the plate, there will be a corresponding

stress and electric field due to the applied drive. Eq. (5.1) and

(5.2) can now be written as:

T.. = 0u.

(49a)

D. + D = 0

where Tij, Uj Di are the components of stress, mechanical

displacement, and electric displacement, respectively. The

quantities Di represent the electrical term due to the applied

potential. The associated boundary conditions for a pressure

release boundary with zero-normal component of electric

displacement is given by:

Ni (Tij) = 0

(49b)

N.(Di+Die) - 0N1ii

The previously derived homogeneous solution yielded the
m m

functions (ul, u3, tm), which satisfy the eqution of motion (49a)

and boundary conditions (49b). Now, if we assume that the
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L'

." solution due to the applied field is (ul, u 3 , 4), these functions

must also satisfy (49a).

Now let's multiply (49a) by Um once and then by Uj and

subtract and integrate over the volume:

[(ij. + pw2 um ) u (T + U ] dV 0 (50)
V 3jI 3 13,1 3, 3

Now by the divergence theorem:

i22

(W 2 _w2 pLm dV = j Ni[T.. m - T m U.+D ,m - Dm,] ds,. (m " i ) ii~jjI i i

v s 13 1
• -(51)

Since the homogeneous solution yielded zero-normal component of

stress, mechanical displacement and electrical displacement at the

boundary, Eq. (51) can be rewritten as:

(W2 _ 2) f P LP Uj dV f f Ni (Dm *) dS (52)
v S

T. Now we can write
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U g2 Ni(D'*) dS (53)

m m (m " i

Um

where

-.

gm N = p Um U dV (54)
V

Eq. (53) shows that at w = w the displacement function goes to- m

infinity, and this is usually the case for the driven plate if

there is no damping in the plate. Now the displacement and

potential function due to the applied field is required, so first

we expand the solutions of the problem in Fourier sine and cosine

series:

U = n U (x3 ) sin(Lnx)I" n 3

U3  = > V(x 3 ) cos(Lnx 1) (55)
n=1

q = B (x3) cos(Lnx)ps n=1  n3 n1

where U1 , U3 are the displacements along xI, x3, res-

pectively, 4' is the particular solution due to the appliedps

.. . .**.~
* . .
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electric fields, U ( x )9V (x B B(x) are acoustic amplitude

distributions in the plate, arnd Ln are the discrete eigenvalues of

the wavenumber.

Substitution of (55) into the linear piezoelectric

equations of (5.1), (5.2) gives

K 1 U(X 3  + (K 2 + K 4) V,3 + K 3B, 3 + K5V, 33 (56a)

L 1V(X 3) (L 2 + K4) U, 3 + L 2 V,'33 + L 3B, 33 0 (56b)

MR(v -K3 U, + L V + M B, 0 (56c)1 3 3 3 3 '33 2 '33

where

K= 2K11 1 L n K2 =-C 13L n K 3 = e31L n K 4 =-C 44L n K 5  C4

L L 2  L L
1 44 n L2 = 33  3 3

M L 21. 1Mn 2 - 33

(57)

The sets of equations in (55) constitute the solution for

the forced vibration problem considered here.
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Now multiply (56b) by -K3 and (56c) by (K2+K4) and add:

V,(X) V + ,33  - X(8
13 x 1 B,3 x1B(8

where

XI =L 3 (K + K4) - K3 L2

X2 = 3 L1

x= K L -M 2(K2 + K4)

x4 =M 1 (K + K (59)

Now taking the derivative of the (56a) with respect to the x3

coordinate and multiplying it by (K2+K4), and (56b) by K1, and

adding:

K U I + (K + K4) V,33 + K3B,33 + K5 U,333  - 0

L1 V - (K + K4) U,3 + L2 V,33 + L3 B,33  -0

-.. 2.. ............... .. .. .. ..-....- - - -- ----- --
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which results in

V'33Y 1 + VY2 + B,33 Y3 + U 3 3 3Y4  = 0 (60)

where

2

Y = (K2 + K4 ) + K1 L2

Y2 = L KI

y2 L1 K1

Y = K3 (K2 + K4) + K1 L3

Y4  = K5 (K2 + K4) (61)

Also from (56c), let's take the double derivative with respect to

X3 coordinate:

M. L3 M

U,333 -- L- B,33 + + 2 (62)333 KV,3 K3 3333  g*3 33

Substitution back into the equation of (60):

!K

* - . . * **R* '* * '* ' *..- N **~.*
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V 3 ) + V, 33y1 + VY2 + B, 33 (Y3 +Y
3 3

+ B,3 3 3 3  )) (63)
3

Now let's take the double derivative of (58) and substitute back

into (58):

x3  x 2X3  x B4  x 2 x4  x2 2

V,3333  B -. 1) (- ) B + (7) V (64)

By substituting (64) into (63), Eq. (65) results:

L3 x3  M2 x23 4 + 3 )2
L 3 + M) B,3333 + [xx j x4 + x3 ((K2 + K4) + K1L2 )
K3x1 K3 1i 1i x

xx4 x4
+ (K3(K2 + K4) + KIL3 ) ] B,33 + 24 N ((K2+ K4 ) + KIL2 B

[(")2 4) 3) -T2-x
1x 1

) - ((K2 + K4 ) 2 + K L2 ) + KIL 1] V = 0 (65)
1i 1 2 4) 1)

in which V can now be defined as a function of B:

. . . . ..
,
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hV = (1)B, 3333  33 , + (-i-)B (66)

where
L3x 3  M2

1 K 3 xI  K 3

2 2 x + xI (((K2 + K4 ) + K1L2 ) + (K3 (K2 + K4) + KIL 3 )px ×1

x2 x 4  x4  2
z3  ---T- x ((K2 + K4 ) + K1 L2 ))

x 1

x2 2 x 267
z= - ((K2 + K) + KIL 2) - K1L1 - 1 (67)

1 1

Now by substituting (66) back into (58):

MIBn(VI)(x B(IV) I)
1 ( n 3) + M2B n(' (x3 ) + M3Bn(  (x3 ) + M4B n(x3 ) = 0 (68)

where

(-(c13Ln+kn)+e31L n 33 )[ (-e31L n- 33 (c13Ln+Ln)+ 33(c 13 L n-L n) 31L n 33 )]
I= -(e3Ln )2 L2[j L 3 3 4 - 2

31 n n(e 31L) n ((C13Ln+Ln n 33)]

~ f*J*~.~J..~.".-.*.'..* ....... . . -. *. .* .4 . , *.** .. ~ . . . . . a. .. . . . . .
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!3
,.

_3  L3(+ -31L n + - _ Ln1 2 1

(E13Ln + Ln ) - eL n 33 n n

+ -e31Ln + c33(-c13L - Ln) ]  - Ln) - C11Lnc 3 3 )

L (-E L - L - L2 L 3 - *

!" e31Ln('1 " )- l )] " e31Ln e31Ln

31 + 33 ( 13L Ln ) +

(-E13L n" Ln) - e31L n c13  e31Ln

M2  . 3  - 3

31 L n- - 24+2EI e31 Ln-"( cl .- n .Ci "C n 33 )-EllLn [_

(C13Ln+Ln) + e31L nC33 (cOLn+Ln ) 'e 3 1Ln c 33

Oo 5
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+e3 1Ln  1 (C13Ln+ Ln) L 3 EL 2  E )
- - - 11 n ('13Ln-Ln) "C ln 33

e 33 ( 13Ln+Ln) + e 3 1Lnc 33

- L3 2
3  4 e 3 1 n

- L e3 Ln+ 3 3 (-c13 Ln-Ln))Je 3 1L n - lL n ( c L Ln) + L
1-C3Ln-.n) + 31Ln( 33

M3= - L3  - 231 n 2_- 2 4_ e31 Ln(-C e31 L ((I 3Ln-Ln) .c11Ln E3 3 ) -11Ln- - i + L)

-3Ln-Ln)+e3 nC33  (-Cl 3LnLn) e 3 1L n

. - 5 2

£11~~( LL (c+L L

Th3 se31Ln 11 Ec 13Ln ln ceL n c13nn a2 mp 2l
t (r-i13Ltn i- n )+n 3h Ln E33 (e p iLn+Ln )-3Ln 33 1 n n

dM

W'.4 = 3  - 3e 1 nL - - -1 4 e31Ln
-E 3 n_ 4- 4 LE )[((_E13Ln.Ln) 11in 33 .11n - E L -31-13L n - n )+31Ln 33 (-31L n -' n )- n J33

:C - 11 Ln (13 L n + L n) (69)

The solution to Eq. (55) will be the acoustic amplitude

distribution in the plate. the particular potential solution now
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must be matched at the boundary of the plate to complete the

solution of the problem. Eq. (68) is a sixth-order ordinary

differential equation, which has six roots, but because of the

form of the solution only three roots need to be considered, since

the other three roots yield the same solution and need not be

considered.

Now let's take the solution of the form

Yx3
B (x3) = E e (70)

Substitution in Eq. (68) results in:

Mly6 + M2y4 + M3y2 + M4  0 (71)

Since only three roots need to be considered, this results in:

M3  2M1y + M2y + M3Y + M4  = 0 (72)

The roots of (72) must now be introduced back into the equation of

(70):

B (x3) = Ei e (73)

,' o- ~... . o-.e.. ..... ...... . . ........

S S • .. . .. . , . . . : --.----S- .-. .. r . , . ,. ,. -* ..- . ... - , .S., ° , ,. o ., . . . .
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Also from (55)

3 YiX3

ps(XlX 3 ) = > > Ei e cos(LnXl) (74)
n=1 i=1

which must also satisfy the driving potential at the face of the

plate (i.e., x3 = +h)

cc

*ps(Xih) = Bn(h) cos(L n x1 ) (75)

where Ln now must be matched with the driving wavenumber (i.e.,

K =-sineo), where in the above c is the speed of sound in
C 0

water, w is the driving frequency, o is the steering angle and
0

Bn(h) is the amplitude of the wave at the surface evaluated from

(73).
To obtain the spatial filtering curve (i.e., acoustic

amplitude distribution versus normalized wavenumber), a particular

wavenumber corresponding to specific steering angle was chosen and

the operating frequency was set at the corresponding resonant

frequency. This results in the evaluation of the acoustic

amplitude distribution from (75).

, -i - . " .' -" . ; - ' .' , . , % , . . % " . . . . .' -. -. . -. .% q . • .- . .- .,
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The theoretical analysis that was just derived was

performed for the parameters of the piezoelectric material used in

this thesis for a fixed normalized frequency and 100 steering.

Figure 4 shows such a plot. The abscissa is the normalized

wavenumber and the ordinate is the normalized acoustic amplitude

distribution in the plate truncated to unity. It is clear that at

the normalized wavenumber of 100 steering, the acoustic amplitude

distribution goes to infinity, and as the wavenumber changes, the

amplitude decreases exponentially. This spatial filtering curve

is the main phenomenon in the continuous piezoelectric plate that

serves to reduce the grating lobe.

Since the phases to steer the beam in the continuous plate

have been quantized, the numerical analysis using fast Fourier

transform was performed to get the theoretical beam pattern for a

continuous plate. The beam pattern for a continuous piezoelectric

plate length of 2L can be written as:

V(K',6) f 1  (76)
-L

where c(x) is the quantized phase necessary to steer the beam
a "V'.

K" electrically. The first term in the integral is the directivity

p..

p.

- -X..:p' .......". * % ** * * ***l. *p* *
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pattern, K' is the wavenumber, x, is the distance (i.e., -L < x, <

L) and B is the physical angle. Taking the inverse Fourier

transform of the second term in Eq. (76) gives;

D(K) = jkx [cos[¢(x)] - i sin[(x)]] dx (77)
-L

Now the spatial filtering function of Figure 4 must be multiplied

to obtain a new spatial distribution:

Y(K) = Z(K) D(K) (78)

where Z(K) is the spatial filtering curve defined numerically from

(75). Now by taking the inverse Fourier transform of (78), we

obtain

Y(x) = L Y(K) dK (79)
-L

and the beam pattern can now be evaluated by taking yet another

inverse Fourier transform by using Eq. (76):

V(K',e) = L Kx 1 sn Y(x) dx (80)
-L

I

Kx 

in

~ ~ ~ ~ ( 0) 1- .Y-"-x' d-x' (80)-";-" ',-.....-.i-. .?.?-.-.
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Figure 5 shows the theoretical beam pattern for 2X spacing

where there is no spatial weighting function and the beam has been

steered to 100 with uniform amplitude shading. The first grating

lobe can be seen to be at about 27. Figure 6 shows the same beam

pattern identically except the spatial filtering function has been

introduced. The grating lobe can be seen to be reduced

considerably. In contrast to the acoustically isolated and

electrically segmented plate the acoustic amplitude distribution

in the plate is uniform since the segments move as a whole, so

there is no spatial filtering effect in a discrete segmented

piezoelectric plate.

."

I'
[,
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CHAPTER III

EXPERIMENTAL ANALYSIS
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3.0 Introduction

In this chapter the theoretical analysis of Chapter II

will be verified against experimental data. The first part of

this chapter provides a description of the receiver-transmitter,

the physical condition in which the transducer was tested, the

experimental set-up, system design and the phasing scheme used to

steer the beam electrically over a certain aperture range.

In the second part of this chapter the experimental

measurements for the dispersion curve, the grating lobe, and the

mirror lobe in the continuous plate and in the discrete plate when

applicable will be analyzed. The effect of two, three and four

bit quantization on side-lobe structure, the mirror lobe and

grating lobe will be compared against the lobes of a segmented

discrete type.

3.1 Receiver/Transmitter

In this part the receiver and transmitter properties, the

physical condition under which the transducer was tested, the

instrumentation system design to obtain the data, and the phasing

scheme used to steer the beam electrically will be discussed.

L'

°"". . °"°' .'u°-",'% ." o -.
°

. .I
° "
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3.1.1 Transducer

Although the transducer used in this thesis to provide the

experimental measurement could be used both as a receiver and

transmitter, it was used as a transmitter only. The transducer

material used is piezoelectric ceramic (CHANNEL INDUSTRIES

5500). CHANNEL 5500 has a high sensitivity and good time

stability. The dimensions of the piezoelectric plate used in this

experiment are 2 x 2 x 0.24 inches. It is operated in its

thickness fundamental mode of mechanical oscillation and is also

polarized along its thickness direction.

The numerical values of elastic, piezoelectric, mass

density and dielectric constants obtained from CHANNEL INDUSTRIES

for lead zirconate (CHANNELL 5500) are:

Cll 12.1x1O10 Newton/meter 2 P = 7.75x10 3 kg/m3
101

C33 = 11.lxlO I  Newton/meter 2 E11 /C = 1730 Relative dielectric

constant, free

C44 = 2.11x10 10  Newton/meter2  C33/o = 1700 Relative dielectric

constant, free

C12 = 7.54x10
10  Newton/meter2  e = 15.8 Columb/m2

C13 = 7.52x1010 Newton/meter
2
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For CHANNEL type 5500 piezoelectic material the frequency

constant of the thickness mode is approximately 78 KHZ-INCH.

Using this figure the resonant frequency of the continuous plate

was calculated to be approximately 325 KHZ. The actual maximum

response at zero degree steering was measured to be at 348 KHZ.

In order to permit the beam to be steered electrically,

the transducer was segmented by a diamond saw to isolate the thin

conducting sheet electrically. Twenty segments approximately 0.92

inches wide were cut. For the discrete type the segments were cut

deep enough to isolate the segments both acoustically and

electrically. Figure 1 shows the physical cross-section for such

a plate. The segments for the continuous plate were isolated

electrically by cutting only the thin conducting sheet with very

shallow depth. Figure 2 shows the cross-section for this plate.

Both transducers were set in polyvinyl circular

packages. The piezoceramic elements were mounted only at the top

and bottom edges of the plate, where the acoustical loading is so

minimal that it can be neglected. Figure 3 shows the cross-

section of the package which was used in this thesis. Since the

plate segments will be driven electrically the package was filled

Sm

-

F>
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with castor oil. The main reason for choosing castor oil as an

insulating medium is that its acoustic impedance matches that of

the water.

Since the plate, which can have a wide variation in

electrical impedance, must be driven electrically over long wire

length, there could be additional phase shifts which could distort

the phasing scheme and could affect the beam pattern of the

system, especially the side-lobe structure. A solution to this

was to shunt the segments with a resistor which, in combination

with the 1.8 KOHM reactance of the ceramic (at resonance) yields a

characteristic impedance of approximately 100 OHM, matching the

characteristic impedance of the twisted pair wire. The cable used

is made by the 3M Company as ribbon cable type. It has 20 twisted

pairs which are used for the twenty segments.

The beam width of the transducer used in this experiment

was calculated to be approximately 5.2 degrees at the operating

frequency of 325 KHZ beyond 1 meter and 5 cm wide at shorter

ranges.

The hydrophone used to obtain the acoustical data is an

encapsulated 1/8x1/8 inch ceramic cylinder resonant at about

380 KHZ. It was located approximately 1 meter away from the

- " .. /£ 1 " • w .' ,-, ', . . .'. -* -,-..-* ,** , '... . . .-; .. ... ." ".. .' ..' - . . ." '. - . -
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transducer so that a far field measurement of the transducer would

be valid. This distance was calculated to be 1/2 meter

from D2/X, where 0 is the aperture size of the transducer and X is

the wavelength at the operating frequency of 325 KHZ.

The experiment was tested in a 2'x3'x4' polyethelene-lined

tank. Figure 4 shows the tank in which the system was tested.

- Because of the limited dimensions of the test tank, the pulse

width for the signal was set short enough to isolate the

reflection from the boundaries.

3.1.2 Instrumentation System Design

Figure 5 is a block diagram of the instrumentation system

used in this thesis which consists of seven basic blocks:

transducer driver, transducer, hydrophone, hydrophone receiver,

analog to digital converter, system motor drive and data

acquisition system.

The system was designed to provide arbitrary phasing of

the individual segments. This was set by picking a minimum

quantization interval of 2w/16. To obtain this we multiplied

the carrier frequency by 16 on a frequency burst generator

(WAVETEK) to clock the sixteen stage shift register (74LS164). A

U'i

. . . . . . . . . . . .., .
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divide by sixteen counter output (74LS163) was used as the input

to the shift register. This method provided sixteen phases

uniformly between zero and 2w. The first eight phases out of the

shift register were used as inputs to a pair of (8x10) mini-matrix

selector switches and the last eight to another pair of (8x10)

switches. These selector switches provided the selection of any

of the sixteen phases to each of the 20 individual segments.

Twenty double-pole single throw switches were used to select

between the first eight and the last eight phases. A variable

gain amplifier is used to amplify the signal that now must drive

the transducer segments. This variable gain amplifier allows the

amplitude to be adjusted on each individual segment to obtain any

desired drive amplitude shading across the transducer.

The hydrophone output was filtered to reduce the noise in

the channel and increase the signal to noise ratio for

measurements. A full wave rectifier and a low-pass filter was

used to generate the envelope of the acoustic signal and then

amplified by two stages of low noise and high bandwidth gain

(HA4620-8) to drive the A/D converter input.

Block five shows the analog to digital converter. This is

a multiplexed A/D converter controlled over the IEEE-488 bus

i

"- e. ° ,o.•....... ,.......
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(Connecticut Micro Computer). The A/D converter has sixteen

channels of analog input multiplexer which sequentially sample the

input data at a 110 microsecond sampling rate into an 8 bit packed

data stream. It also includes the time which was used both to

trigger the WAVETEK and to reset the divide by sixteen counter and

shift register after the analog data was converted into digital

data.

Block six is the system motor drive which is controlled by

the computer. This motor is a SLO-SYN motor with 72 steps per

revolution. In order to achieve higher resolution on the rotating

angle, a reducing gear was used. This motor was rotated

mechanically by using a two bit sequence that was controlled by

the software in the computer via its parallel printer port.

Block seven is the data acquisition system which is the

main processor in the experiment. This microcomputer (ACCESS)

uses its IEEE-488 port to control the WAVETEK parameters and to

control and receive data from the A/D converter. It also

generates the sequence needed to step the motor via the parallel

printer port. The data reduction was controlled in the software

and then stored on a 5 1/4 inch floppy disk (MAXWELL MD1). The

.'

q -. ". € . .. ... .. ". - . , .. , .. ,. .. - - . . .. . . . . ,. •. . ., .. .. . ., • . .



- -- - _7C

78

divide by sixteen counter output (74LS163) was used as the input

to the shift register. This method provided sixteen phases

uniformly between zero and 2-n. The first eight phases out of the

shift register were used as inputs to a pair of (8xlO) mini-matrix

selector switches and the last eight to another pair of (8x0)

switches. These selector switches provided the selection of any

of the sixteen phases to each of the 20 individual segments.

Twenty double-pole single throw switches were used to select

between the first eight and the last eight phases. A variable

gain amplifier is used to amplify the signal that now must drive

the transducer segments. This variable gain amplifier allows the

amplitude to be adjusted on each individual segment to obtain any

desired drive amplitude shading across the transducer.

* The hydrophone output was filtered to reduce the noise in

the channel and increase the signal to noise ratio for

measurements. A full wave rectifier and a low-pass filter was

used to generate the envelope of the acoustic signal and then

amplified by two stages of low noise and high bandwidth gain

(HA4620-8) to drive the A/D converter input.

Block five shows the analog to digital converter. This is

a multiplexed A/D converter controlled over the IEEE-488 bus

7 a a . a - . . - . a . .
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plot of the beam pattern was made on the integral dot-matrix

printer of the ACCESS by a software plotting package obtained from

Enercomp Company.

3.1.3 Phasing Scheme

Quantization of the phase was necessary in order to steer

the beam electrically. The required phases can be calculated for

four, three and two bit quantization and for different spacing

between the segments. The input drive to the system can be

written as:

V(T) = A cos(WT -

where A is the amplitude of the drive, w is the driving

frequency, T is the time, and € is the phase. The phase which

must now be quantized can be written by setting V(T) equal to

zero; (i.e., = T= KC T) where Cm is the speed of sound in

W .
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water. Since the plate has been segmented, the total path can be

written as:

x(N) = C T = C ND sine

where N is the segment number, D is the segment spacing. This

results in:

KND sine L,
#(N) =INT[ sn MOD L

where L is the quantization variable, which can be sixteen, eight,

or four depending on the quantization desired (4, 3 or 2 bits).

Figure 6 shows an example of four, three and two bit

quantization for 100 steering, one-half wavelength spacing.

Figure 7 shows an example of four bit quantization at 100 steering

for different spacing. For 1X and 2X spacing, the segments were

electrically tied together to form larger segments.

3.2 Experimental Analysis

In this part of the thesis the experimental dispersion

curve, grating lobe and mirror lobe will be discussed for both the

- .Il. 1- !,-
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TABLE1

QUANTIZATION OF P1/8

SEGMENT 4 BIT 3 SIT, 2 BIT
NUMBER QUANTI ZATION OUANTIZATION QUANTIZATION

1 10 0

2 2 0
3 Lf 4

4 5' q'.
5 6 '

7 9
.10

91 1.5 14 1

12 0 0 0
13 .2 .2 0
14 3 20
is 4 '1 4
1s 6 6 9
17 7 64
18s
19 10 1

20 i610

QUANTIZATION SCHEME

FIG .6

Fig. 6 Quantization of w/8, four, three and two bit

C.
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I, TABLE 2

QUANTIZATION OF PI/8
4 BIT

SEGMENT ONE- HALF ONE TWO
NUMBER LAMBDA LAMBDA LAMBDA

2 2 2

5 6
6 I

7 9 1o 
8 II 10 5
9 2 12 0

10 13 12 0
11 15 0 0

12 0 0 0

13 2 4
14 3 4i
15 4
16 6 4 I
17 7 

18 9 5

19 O of
20 10 D

FIG.7

Fig. 7 Quantlzatlon of w/8, 7 , ), 2X spacing
.1'
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discrete and continuous types of transducers when applicable. The

effect of quantization on the beam pattern of the two transducers

Iwill be evaluated.

3.2.1 Dispersion Curve

The theoretical analysis that was derived in Chapter II

was evaluated for the parameters of the experimental continuous

segmented transducer. In order to obtain the dispersion curve

(i.e., change in velocity versus frequency), a set of phases

computed for a desired steering angle was set up on the segments

of the transducer. Then a sequence of beam patterns similar to

Figures 8 and 9 was generated to identify the frequency of maximum

response out of the transducer. The angle of the maximum response

was then measured and compared against the desired steering

angle. If the angles were matched then the frequency

corresponding to the maximum amplitude constitute a point on the

dispersion curve; if the angle was not matched, another frequency

was chosen, another set of phases computed, and another beam

pattern sequence was run. This iteration process was repeated asr
necessary to obtain points on a dispersion curve.

L.

L.

L
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Figure 8 and 9 show the final beam pattern for a 50

steering angle at one-half wavelength segment spacing. The

abscissa is the angle in degrees, the ordinate is the normalized

voltage in (db) and the third axis is the frequency in KHZ. As

the frequency is changed the amplitude will rise until it reaches

a maximum and then decays as the frequency increases. Figure 8 is

a right-hand view and Figure 9 is a left-hand view of the same

data.

In order to compare the theoretical dispersion curve

versus the experimental one, the data for the experimental

transducer was normalized to 325 KHZ so that the comparison could

be achieved. The normalized dispersion curve is plotted for the

continuous plate in Figure 10. The abscissa is the steering angle

in degrees and the ordinate is the frequency in KHZ. The points

obtained from measurements form a well-defined curve with very

little scatter. Although the experimental points are similar in

shape to the theory, the magnitude of dispersion effect of the

experimental curve is significantly less. The difference between

the experimental and theoretical curves could have been due to

limitations in the model. Water loading of the transducer,

r.............. ..••*, . ' .. -....-- 
-

76 . .
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ignoring boundary impedance, and the assumption of an infinite

plate are all factors that could influence the dispersion.

3.2.2 Grating Lobe

In Chapter II it was shown theoretically that because of

the spatial filtering in the continuous plate the grating lobe in

a continuous plate was reduced considerably. For the discrete

segmented plate the grating lobe occurs when the spacing between

the segments is greater than one-half wavelength when the beam is

steered off normal; i.e.:

KD(sine - sineo) = 2nn (n =1,2,...)

where K is the wavenumber, D is segment spacing, e is the physical

angle and 80 is the steering angle.

This results in:

"-" nX
sinO = if 0°  -6

p. . .
4

* ' S ' * .- * V .4 . . . . . . .. .. . . . ...
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When the phase between the segments reaches 2v, the

pattern repeats itself, and this happens when we have some integer

multiple of spatial harmonic of the wavenumber. Both the

theoretical and experimental data for the discrete segmented plate

show such an effect. The theoretical and experimental data for

100 steering, 2X spacing, four bit quantization and uniform

shading is shown in Figures 11 and 12, respectively. The first

grating lobe in both cases occurs at about -27°, as predicted by

the theory. The other two grating lobes can also be seen at about

+420 and -66* in Figures 11 and 12. The side-lobe structure of

both the theoretical and experimental pattern seem to match each

other rather well.

In the continuous plate, because of the spatial filtering,

the grating lobe was observed to be reduced considerably, as

predicted by the theory. The spatial filtering effect in the

continuous plate was measured and compared against the theoretical

data. To obtain the experimental spatial filtering curve, a

particular reference steering angle was selected and the operating

frequency was set at the corresponding resonant frequency. The

amplitude was then measured for different electrical drive

wavenumbers. The normalized expcrimental curve is plotted in
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Figure 13 along with the theoretical spatial filtering curve. The

theoretical spatial curve was truncated to unity to achieve a

normalization equivalent to measurement. This plot also includes

an adjusted wavenumber normalization which was a best match to the

experimental curve. The wavenumber adjustment necessary to match

this was approximately 10%. This plot is for 100 steering. The

abscissa is the normalized wavenumber and the ordinate is the

normalized amplitude.

Figures 14 and 15 show the theoretical beam pattern for a

100 steering angle, 2X spacing, and uniform shading, with no

spatial filtering and with spatial filtering, respectively. The

first grating lobe from the main beam has been reduced by 16 db.

The other two grating lobes are shown to have an improvement of

about 18 db. The experimental beam pattern for a continuous plate

with the same characteristics is shown in Figure 16. The first

grating lobe is down at approximately -23 db, which agrees well

with the theory. Although the other two grating lobes are shown

to also be reduced, the reduction is about 15 db versus a

theoretical 20 db.

I7

t
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3.2.3 Mirror Lobe

The reflection from the edge boundary of the continuous

plate that was discussed in Chapter I will cause a standing wave

to be formed. This results in a mirror lobe when the beam is

steered off normal. An active approach to suppression of the

mirror lobe was used and gave good results. Since the phase for

-' each segment could be set independently, it was possible to drive

the last three segments in the plate out of phase with the

original distribution. This acts to cancel the amplitude of the

wave by the time it reaches the edge boundary and in effect

reduced the mirror lobe significantly. The number of segments

used to reduce the mirror lobe was determined experimentally.

Figure 17 shows the 120 steered beam for a continuous

plate with one-half wavelength spacing between thesegments. The

mirror lobe can be seen to have a high level nearly comparable to

the main lobe at about -120. Figure 18 shows the same beam

pattern except the last three segments were driven out of phase.

The mirror lobe can be seen to be suppressed considerably. The

suppression is about 12 db. Figures 19 and 20 show the 3-D view

of the fifteen0 beam for one-half wavelength spacing for the

right-hand view and the left-hand view, respectively. The figures

a.

-.l." <~*-
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show how the mirror lobe moves as the frequency changes. This is

an indication of the frequency dependency of the mirror lobe in

the continuous plate.

An unexpected low level (-15 db or less) lobe in the

measurements of the beam pattern for the continuous plate was

observed at approximately -42. This was probably generated

because of the shear modes in the plate which were weakly excited

by the electrical drive. With this shear mode there is an

associated shear velocity. By Snell's law the angle of the

radiated beam can be written as:

C
sine = w

S

where Cw is the speed of sound in the water and Cs is the shear

velocity in the plate. In the continuous piezoceramic plate this

was given by CHANNEL INDUSTRIES to be 2250 meters/sec. Although

the location of the shear lobe was independent of both steering

angle and frequency, the amplitude of the radiated lobe had

dependency on both frequency and steering angle.

Figure 19 shows a right-hand view and Figure 20 shows a

left-hand view for a 150 steered beam and one-half wavelength

r
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spacing. The abscissa is the angle in degrees, the ordinate is

the normalized voltage in db and the third axis is the frequency

in KHZ. The effect of frequency can be seen to change the

amplitude of the shear lobe at -420s in the beam pattern of the

continuous plate. The effect of steering angle on the shear lobe

is illustrated by Figure 21, which shows a right-hand view, and

Figure 22, which shows a left-hand view for a 0* beam. The

amplitude of the lobe is about -24 db for 0* steering versus the

-16 db for 150 steering.

3.2.4 Quantization Effect on the Lobes

of the Discrete and Continuous Plate

The effect of four, three and two bit quantized driving

signals was investigated for the discrete and continuous plates.

Figure 23a, 23b and 23c shows a 100 steered beam for a

discrete plate at 1/2X spacing, uniform shading for four, three

and two bit quantization, respectively. Because of the finer

phases of the 4 bit quantization, the side-lobe structure for this

quantization was best in comparison with the other two

quantizations. This effect can be seen very well at -23°, where

the side-lobe is about -20, -15, -14 db for the four, three and

| e % ~ *' .% % ...- ' i t .. . * . * * *
--o. .q...~/f*~*~......*-*

- '* 
4

b S"~
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two bit, respectively. The first side-lobe of the main beam for

the four bit is -9.5 db versus the side-lobe of about -8.5 db and

-8 db for the three and two bit, respectively. The betterp performance of the four bit quantization can also be seen at -50*

where the side-lobe is at -24 db versus the side-lobes of -20 db

and -16 db for the three and two bit cases, respectively. The

I"

effect of quantization ranges (2-6 db) at -23* and (1-2 db) for

the first side-lobe.

Figure 24a, 24b and 24c shows a 50 steered beam

for 1/2x spacing in a continuous plate for four, three and two

bit, respectively. All side-lobes for the continuous plate are

V lower than those of the discrete plate and the effect of phase

quantization is also smaller for the continuous plate. The first

side-lobe is about -15 db for all the quantizations. The four bit

has a side-lobe of about -19 db at a 280 angle. The three and two

bit shows the same side-lobe at about -14 db and -17 db,

respectively, which is not too much improvement at that particular

angle. But at -12* the side-lobe for the two bit is about -16 db

versus -24 db of the three bit quantization. This is rather a

good improvement in the side-lobe structure of a continuous plate.

I•
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The grating lobe in the discrete plate also shows a

dependency on the quantization. Figure 25a, 25b and 25c shows a

50 steered beam for 2x spacing for four, three and two bit,

respectively. The first grating lobe for four bit quantization is

about -14 db. The three and two bit also show that they have

grating lobes of about -12 db and -10 db, respectively, at about

-28* angle. The four bit quantization is shown to have a

considerably reduced grating lobe compared to the others.

For a continuous plate, the grating lobe was considerably

reduced because of the spatial filtering effect. The effect of

coarser quantization is also shown to be less than for the

discrete plate. Figure 26a, 26b and 26c shows a 50 steered beam

for 2X spacing. The grating lobe is about -30, -24, -24 for four,

three and two bit, respectively.

For the continuous plate the mirror lobe was suppressed

more effectively with four bit quantization because of the finer

phase adjustment that was available to drive the last three

segments for cancellation. Figure 27a, 27b and 27c shows a 100

steering for 1X spacing, uniform shading for four, three and two

bit quantization, respectively. The four bit quantization effect

on the mirror lobe is about -22 db versus the -20 and -19.5 db for

the three and two bit, respectively.

¢.
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4.0 Conclusion

The purpose of this thesis was the study of the radiating

properties of a segmented continuous piezoelectric plate

transducer in comparison with a discrete segmented plate.

Continuous plates have been shown to have both advantages and

disadvantages. The major advantages of the continuous plates are

the spatial filtering effect and ease of fabrication. The

disadvantages are spurious shear lobes and mirror lobes, and a

narrow operating frequency bandwidth.

The spatial filtering effect of the continuous plate had a

very noticeable impact on the grating lobes. This effect was

evaluated both theoretically and experimentally. The theoretical

analysis was carried out by computing the response of the plate in

wavenumber space and using that response as a weighting function

on the wavenumber spectrum of the impressed driving voltage.

Experimental measurements confirmed the theoretical predictions.

The first grating lobe for the continuous plate was down to -29 db

compared to -4 db for the discrete plate.

The spatial filtering effect of the continuous

piezoelectric plate transducer served to smooth the side-lobe

1.

I Z,

P.
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structure significantly. The side-lobe performance of the

continuous plate was lower than that of the discrete plate. The

first side lobe for the continuous plate was down -12 db compared

to -8 db for the discrete plate.

The spatial spectrum of quantized drive for different

phasing was also investigated for four, three and two bit. The

four bit quantization gave the best performance compared to the

two bit quantization for both continuous and discrete plate. The

first side lobe for the four bit quantization in a continuous

plate was down -12 db compared to -10 db for the two bit

quantization for 2X spacing and 100 steering, a degradation of

2 db due to quantization. The first side lobe for the four bit

quantization of the discrete plate was down -9 db compared to

-3 db of the two bit quantization for 2A spacing and 100 steering,

showing a greater degradation of 6 db.

In the continuous plate the mirror and shear lobes were

shown in Chapter II to be of major concern. The mirror lobe was

generated by the reflection of the travelling wave from the edge

boundary which created a standing wave. The mirror lobe was

experimentally cancelled by actively driving the last three

segments out of phase, which reduced the mirror lobe by about
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18 db. Shear lobes were experimentally observed to be at

approximately 42%. These were symetrical shear waves which were

weakly coupled to the electrical drive.

A suggestion which could be made here is to passively

suppress both'the mirror lobe and shear lobe by using a proper

damping at the edges of the continuous plate to eliminate a

standing shear wave or normal mode which might be generated in the

continuous plate.

A very important physical advantage of the continuous

plate over the discrete plate may be in the ease of fabrication,

especially for high frequencies. At high frequencies,

* wavelengths are small and fabrication of a multi-element array is

difficult, particularly for imaging sonars working in the

megahertz region with apertures on the order of 100 wavelengths.

For narrow scanning apertures the conducting electrode of the

V continuous plate can be cut at rather large spacing (greater than

1/2 wavelength) without worrying about the grating lobes, since

they will be reduced by the spatial filtering effect of the

continuous plate. The necessity of dicing the fragile ceramic

plate may also be circumvented by merely using individual

electrodes created by silk screening the electrode. pattern

* initially or created by etching a continuous electrode surface.
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